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Abstract. I construct the spectral function of the Luther-Emery model which describes one-dimensional
fermions with one gapless and one gapped degree of freedom, i.e. superconductors and Peierls and Mott
insulators, by using symmetries, relations to other models, and known limits. Depending on the relative
magnitudes of the charge and spin velocities, and on whether a charge or a spin gap is present, I find
spectral functions differing in the number of singularities and presence or absence of anomalous dimensions
of fermion operators. I find, for a Peierls system, one singularity with anomalous dimension and one finite
maximum; for a superconductor two singularities with anomalous dimensions; and for a Mott insulator one
or two singularities without anomalous dimension. In addition, there are strong shadow bands. I generalize
the construction to arbitrary dynamical multi-particle correlation functions. The main aspects of this work
are in agreement with numerical and Bethe Ansatz calculations by others. I also discuss the application
to photoemission experiments on 1D Mott insulators and on the normal state of 1D Peierls systems,
and propose the Luther-Emery model as the generic description of 1D charge density wave systems with
important electronic correlations.

PACS. 71.27.+a Strongly correlated electron systems; heavy fermions – 71.30.+h Metal insulator
transitions and other electronic transitions – 71.45.Lr Charge-density-wave systems

1 Motivation

Non-Fermi liquid behavior in correlated fermion systems
is an exciting topic of current research. One-dimensional
(1D) correlated electrons (more precisely: one-dimensional
quantum systems with gapless excitations) are a paradig-
matic example of non-Fermi liquids: their low-energy exci-
tations are not quasi-particles but rather collective charge
and spin density fluctuations which obey each to their
proper dynamics [1]. The key features of these “Luttinger
liquids” [2] are (i) anomalous dimensions of operators
producing correlation functions with non-universal power-
laws, parametrized by one renormalized coupling constant
Kν per degree of freedom ν = ρ (charge), σ (spin) which
have the status of the Landau parameters familiar from
Fermi liquid theory; (ii) charge-spin separation, leading to
a fractionization of an electron into charged, spinless, and
neutral, spin-carrying collective excitations, with different
dynamics determined by velocities vρ 6= vσ. Each of these
features leads to (iii) absence of fermionic quasi-particles.
Responsible are the electron-electron interaction which is
marginal in one dimension and therefore transfers nonva-
nishing momentum in scattering processes at all energy
scales, and the nesting properties of the 1D Fermi sur-
face. They produce divergent 2kF charge and spin density
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fluctuations which then interfere with Cooper-type super-
conducting fluctuations.

All three features clearly show up in the single-particle
spectral function [3–5]

ρ(q, ω) = −π−1ImG(kF + q, µ+ ω) (1.1)

which can be measured (within the “sudden approxima-
tion”) by angle-resolved photoemission (ARPES) (with
bad angular resolution, one essentially measures N(ω) =∑
q ρ(q, ω) and is able to probe only features (i) and (iii)).

The spectral function is purely incoherent [3–5], at best
with peaks at the dispersion energies of the elementary
charge and spin excitations, indicating that the electron
behaves as a composite particle built on more elementary
excitations. In equation (1.1), G is the Fourier transform
of the retarded electronic Green’s function

G(xt) = −iΘ(t)〈{Ψ(xt), Ψ†(00)}〉 , (1.2)

kF the Fermi wave number, and µ (= 0) is the chemical
potential.

Much experimental effort has been devoted to study-
ing and attempting to “prove” Luttinger liquid correla-
tions in various quasi-1D systems. Examples are organic
conductors of the family based on the molecule TMTSF
(Bechgaard salts) where both NMR [6] and (partially)
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photoemission [7] have provided evidence in favor of a
Luttinger liquid picture, quantum wires fabricated into
semiconductor nanostructures [8], or edge states in the
fractional quantum Hall effect [9]. In all cases however,
there appear to be problems with the precise values of
the parameter Kρ derived, or with some other aspects of
the interpretation in terms of a Luttinger liquid. It is not
clear to date to what extent these discrepancies are due
to the neglect of some experimentally important factor in
the theory (such as, e.g. three-dimensionality or electron-
phonon coupling in the chain systems, or deviations from
the special filling factors in the quantum Hall edge states),
or indicative of more fundamental problems either with
theory or experiment.

1D (organic and inorganic) charge density wave
(CDW) systems apparently could provide an alternative
field of search for these typically one-dimensional corre-
lations. Photoemission indeed has produced results [10]
similar to the Bechgaard salts when performed with low
angular resolution. With high angular resolution, a broad
dispersing feature has been identified in (TaSe4)2I [11]
while two such signals have been measured in the blue
bronze K0.3MoO3 [12]. Even though the actual situation
in K0.3MoO3 may be slightly more complictated because
there are two almost degenerate bands cutting the Fermi
energy, it is clearly of importance to first understand the
photoemission spectrum expected from the metallic phase
of a single-band CDW material. Finally, while this paper
was prepared, new experiments on the organic two-chain
conductor TTF–TCNQ became available which clearly
show dispersing signals both on the TTF and TCNQ
chains with very unusual lineshapes [13]. Specifically, the
TCNQ signals are somewhat similar to K0.3MoO3, and we
know from independent experiments that there are strong
2kF -CDW fluctuations on this chain in the metallic state
[14]. (The TTF-chain exhibits strong 4kF -CDW fluctua-
tions at very high temperature and is expected to be a
Luttinger liquid.)

The association of the two dispersing signals of
K0.3MoO3 with the charge and spin excitations of a Lut-
tinger liquid is suggestive. As I will explain in the next
section in more detail, it is incompatible, however, with
the CDW transitions observed in these materials. This in-
compatibility motivates the consideration of the Luther-
Emery model and is at the origin of the work reported
here. Section 2 will discuss this model, its generic role
as a low-energy fixed-point of 1D quantum systems which
have both gapped and gapless degrees of freedom, and the
picture we had of its correlations prior to this work.

Recently, photoemission experiments also have been
performed on the 1D Mott insulator SrCuO2 [15]. In Mott
insulators, the charge fluctuations are gapped while the
spins remain gapless. Their low-energy physics, therefore,
can again be described by a Luther-Emery model, and
our theory can be adapted to study the spectral functions
of 1D Mott insulators. Earlier, angle-integrated photoe-
mission on BaVS3 has been interpreted as evidence for a
Luttinger liquid [16]. The behavior of the conductivity,

however, is more insulator-like, and the present theory
might be of interest there, too.

Section 3 presents the construction of the single-
particle spectral function (1.1). In Section 4 I present
results for the spectral functions of the spin-gapped
Luther-Emery model, i.e. 1D Peierls systems and super-
conductors. In Section 5, the spectral functions of 1D Mott
insulators are presented. Section 6 shows how the con-
struction procedure of Section 3 can be generalized to ar-
bitrary correlation functions of local operators. I compare
my results with information from other studies in Sec-
tion 7 and use them for an interpretation of published
experiments in Section 8. I conclude with a short sum-
mary and a brief perspective. Partial results have been
presented earlier [17,18].

2 The Luther-Emery model

The Luther-Emery model extends the Luttinger model by
including the backscattering of electrons across the Fermi
surface. Its Hamiltonian is [19]

H = H0 +H1 +H2 +H4, (2.1)

H0 =
∑
r,k,s

vF (rk − kF ) : c†rkscrks :, (2.2)

H1 =
∑
s,s′

[
g1‖δs,s′ + g1⊥δs,−s′

]
×

∫ L

0

dx : Ψ†+,s(x)Ψ−,s(x)Ψ†−,s′(x)Ψ+,s′(x) : (2.3)

H2 =
1

L

∑
p,s,s′

[
g2‖δs,s′ + g2⊥δs,−s′

]
×ρ+,s(p)ρ−,s′(−p), (2.4)

H4 =
1

2L

∑
r,p,s,s′

[
g4‖δs,s′+g4⊥δs,−s′

]
:ρr,s(p)ρr,s′(−p): . (2.5)

crks describes fermions with momentum k and spin s on
the two branches (r = ±) of the dispersion varying linearly
[εr(k) = vF (rk − kF )] about the two Fermi points ± kF ,
Ψr,s(x) is its Fourier transform, and

ρr,s(p) =
∑
k

: c†r,k+p,scr,k,s :

=
∑
k

(
c†r,k+p,scr,k,s − δq,0〈c

†
r,k,scr,k,s〉0

)
(2.6)

is the density fluctuation operator which obeys a bosonic
algebra

[ρr,s(p), ρr′,s′(−p
′)] = −δr,r′δs,s′δp,p′

rpL

2π
· (2.7)

The Luttinger model is obtained for g1 = 0 and includes
only forward scattering.

In one dimension, fermions can be transformed into
bosons, and for the Luttinger model, there is an exact
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operator identity relating a fermion operator Ψrs(x) to the
bosonic density fluctuations (2.6) [1,2]. For our purposes,
the approximate expression

Ψrs(x) ∼ lim
α→0

eirkFx
√

2πα

× exp

(
−i
√

2
[rΦρ(x) −Θρ(x) + s {rΦσ(x) −Θσ(x)}]

)
(2.8)

with the two phase fields

Φν(x) = −
iπ

L

∑
p6=0

e−α|p|/2−ipx

p
[ν+(p) + ν−(p)] , (2.9)

and

Θν(x) =
iπ

L

∑
p6=0

e−α|p|/2−ipx

p
[ν+(p)− ν−(p)] , (2.10)

found earlier by Luther and Peschel [20], is sufficient.
This formula allows for a boson representation of the

Hamiltonian and of all correlation functions. Before, it
is important, however, to recall the physics of the phase
fields Φν(x) and Θν(x) in (2.8) [1,21,22]. The charge den-
sity fluctuation operator is related to Φρ(x) by

∑
r ρr(x) =

−π−1∂Φρ(x)/∂x, and likewise for spin σ. When an addi-
tional particle is inserted into the system, a kink of ampli-
tude π is formed in Φν(x). These fields therefore describe
the scattering phase shifts of the particles present in the
system, generated by the particles added. The operators
inserting the particles are exponentials of the dual fields
Θν(x) =

∫
Πν(x)dx, where Πν is the momentum con-

jugate to Φν : [Πν(x), Φν(x′)] = −iδ(x− x′). In a general
fluctuation operator whose correlation function we wish to
evaluate, the prefactor of iΘν/

√
2 measures the number of

ν-particles it inserts into the system while the prefactor of
iΦν/

√
2 measures the number of ν-particles it rearranges

at constant total ν-particle number to generate the desired
fluctuation. By ν-particle, we label, in the first place,

Ψrν(x) = (2πα)−1/4 exp{−i[rΦν(x) −Θν(x)]/
√

2},
(2.11)

the slowly-varying charge or spin part of the fermion oper-
ators Ψrx(x) but, with phase factors reflecting the appro-
priate Fermi seas, these particles will describe the holons
and the spinons of the 1D Bethe-Ansatz soluble models.

The boson form of the Luther-Emery Hamiltonian be-
comes

H0 +H4 =
1

L

∑
νrp6=0

(πvF + g4ν) : νr(p)νr(−p) : (2.12)

H1,‖ +H2 =
1

L

∑
νp

(2g2ν − g1‖)ν+(p)ν−(−p), (2.13)

H1⊥ =
2g1⊥

(2πα)2

∫
dx cos

[√
8Φσ(x)

]
. (2.14)

νr(p) are the operators for the charge and spin densities

ρr(p) =
1
√

2
[ρr,↑(p) + ρr,↓(p)] ,

σr(p) =
1
√

2
[ρr,↑(p)− ρr,↓(p)] , (2.15)

and the interactions have been transformed as

giρ =
1

2

(
gi‖ + gi⊥

)
, giσ =

1

2

(
gi‖ − gi⊥

)
. (2.16)

Diagonalizing the Luttinger part (i.e. H excluding H1⊥)
generates the renormalized velocities of the collective
charge and spin excitations and their stiffness constants

vν =

√[
vF +

g4ν

π

]2
−

[
g2ν − g1‖/2

π

]2

,

Kν =

√
πvF + g4ν − g2ν + g1‖/2

πvF + g4ν + g2ν − g1‖/2
· (2.17)

The phase fields transform as Φν(x) → Φν(x)
√
Kν

and Θν(x) → Θν(x)/
√
Kν. The main effect of the g4-

interaction is a renormalization of vν . We therefore drop
H4 from explicit consideration in the following, and always
assume correctly renormalized velocities vν .

For Kσ − 1 sufficiently large with respect to |g1⊥|,
backscattering is irrelevant, and the Luther-Emery model
reduces to a Luttinger liquid. Its renormalized value of
Kσ can be calculated, e.g. by perturbative renormalization
group [23] which is well-controlled in this case or, if appli-
cable, fixed to unity by the requirement of spin-rotation
invariance. Charge and spin excitations are gapless, and
depending on the value of Kρ, the dominant correlations
are spin density wave (SDW, Kρ < 1, repulsive forward
scattering) or triplet pairing (TS, Kρ > 1, attractive for-
ward scattering). Charge density wave (CDW) and sin-
glet superconducting (SS) fluctuations, respectively, are
subdominant.

The backscattering Hamiltonian H1⊥ is, for Kσ − 1
small enough compared to |g1⊥|, a relevant perturbation
and opens a gap ∆σ in the spin excitation spectrum

εσ(q) = ±
√
v2
σq

2 +∆2
σ. (2.18)

Luther and Emery have shown that for the special value
Kσ = 1/2, the interaction Hamiltonian H1⊥ (2.14) can
be represented as a bilinear in spinless fermions, using
the bosonization formula (2.8) for spinless fermions (mul-
tiply the argument of the exponential by

√
2 and drop

the σ-fields), and diagonalized [19]. On this Luther-Emery
line Kσ = 1/2, the gap is computed exactly to be ∆σ =
|g1⊥|/2πα (α is an infinitesimal in (2.8) but often asso-
ciated with a cutoff of the order of a lattice constant).
Renormalization group then allows to derive the gap for
arbitrary Kσ. The charges remain gapless.

The Mott insulator is the consequence of an instability
in the charge channel, caused by Umklapp scattering off
the lattice for commensurate band-fillings. The Umklapp
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Hamiltonian appropriate for a half-filled band is obtained
by simply replacing spin by charge in equation (2.14),
and its coupling constant often is denoted by g3⊥. Here
the spins are gapless while relevant Umklapp scattering
opens a gap ∆ρ in the charge channel. This generic picture
applies (with little modification only) to all even commen-
surabilities (kF a = [r/s]π/2, s even). The situation is dif-
ferent for s odd, where the Umklapp operator necessarily
couples charges and spins [1], and we exclude these cases
from our study. The Mott insulator is dominated by 4kF -
CDW and/or SDW correlations.

While the Luther-Emery solution is essentially [24] ex-
act, it is useless for computing correlation functions since
there is no practical relation between the physical fermions
and the spinless pseudofermions. Still, we have some qual-
itative information on the correlation functions. Several
methods [25] support the idea that, in the gapped phase,
correlations of the Φσ-field tend towards a non-zero con-
stant as |x| or |t| → ∞ while those involving exponentials
of its dual field Θσ(x) decay exponentially in space (or
oscillate in time). The spin gap quenches low-energy spin
fluctuations, therefore SDW and TS correlations should
be exponentially suppressed. With a constant asymptotic
value of Φσ , CDW and SS are enhanced with respect to
a Luttinger liquid, and now dominate over SDW and TS.
The opening of a spin gap is a necessary condition for
the emergence of dominant SS or CDW correlations in
a 1D metal. As a corollary, a Luther-Emery phase must
exist in the normal state of CDW systems (or supercon-
ductors) between a Luttinger liquid and the 3D ordered
low-temperatures phases. One therefore should be care-
ful in interpreting the properties of the metallic “normal
state” of a CDW system (or of a 1D superconductor) in
terms of a Luttinger liquid.

For the one- and two-particle spectral functions, there
is a general belief that the opening of a gap affects the
system for frequencies smaller than this gap while the
behavior of the ungapped system is essentially recovered
at larger frequency scales. The exponential decay (resp.
oscillations) of correlation functions involving operators
exp[i(. . . )Θσ ] would cut off (shift) the divergences as func-
tions of q(ω) they had possessed in the Luttinger model.
Possibly important power-law prefactors to exponentials
have not been discussed. There has been almost no cal-
culation or systematic construction of such functions – in
particular dynamical ones [26] – and, to my knowledge, no
critical check of these hypotheses by numerical simulation
prior to this work [17,18].

A wide variety of models fall into the Luther-Emery
universality class and my results should be applicable
there in a low-energy sector: Luttinger liquids coupled to
phonons and related models so long as they are incommen-
surate, have wide regions of parameter space with gapped
spin fluctuations and gapless charges [27]; the negative-U
Hubbard model at any band-filling has a spin gap [28],
and the positive-U Hubbard model at half-filling has a
charge gap [29,30]; with longer-range interactions, charge
gaps can occur at different rational band-fillings, too. The
t−J-model has a spin gap at low density [31]. Spin gaps

occur frequently in models of two Luttinger or Hubbard
chains coupled by single-particle tunneling [32,33]. Also
when a 2kF -CDW is established in many coupled Lut-
tinger chains as a consequence of interchain Coulomb in-
teraction, the system passes through a region of attractive
backscattering which opens a spin gap [34].

3 Construction of the spectral function

I now present a systematic construction of the single-
particle spectral function, equations (1.1, 1.2), for the
spin-gapped Luther-Emery model. The Green’s function
exhibits the full complexity of the problem, involving all
four phase fields Φν , Θν , while many others are easier [1].
They will be discussed in Section 6. Here, we limit our-
selves to the diagonal terms of the Green’s function, both
in the branch index r and in the spin index s, and further
assume spin-rotation invariance, so that s is dropped all-
together. This assumption, which I will make throughout
the paper unless exceptions for the sake of an argument are
stated explicitly, further implies Kσ = 1. With the non-
vanishing expectation values of operators exp[i(. . . )Φσ ]
generated by the gap opening, finite off-diagonal terms
are possible, in principle, both here and in multi-particle
correlation functions. They can be calculated in complete
analogy to the terms discussed here, and we ignore them
in the following.

Using bosonization (2.8), the retarded Green’s func-
tion for right-moving fermions (r = +) can be represented
as a product

G(xt) = −iΘ(t)eikF x [gρ(xt)gσ(xt)

+(x→ −x, t→ −t)] , (3.1)

of charge and spin correlation functions

gν(xt) =
〈
Ψ+ν(xt)Ψ†+ν(00)

〉
. (3.2)

The product structure is a consequence of the charge-spin
separation of the Hamiltonian (2.1). The spectral function
(1.1) then is a convolution

ρ(q, ω) =
1

(2π)2

∫ ∞
−∞

dq′ dω′ [gρ(q
′, ω′)gσ(q − q′, ω − ω′)

+(q → −q , ω → −ω)] . (3.3)

The charge part is easy and can be calculated in the
Luttinger model (I only display the leading ω- and q-
dependence)

gρ(q, ω) ∼ Θ(ω − vρq)Θ(ω + vρq)

×(ω − vρq)
γρ−1(ω + vρq)

γρ−1/2 (3.4)

with

γρ = (Kρ +K−1
ρ − 2)/8 for Kρ 6= 1, and

gρ(q, ω) ∼
Θ(ω + vρq)
√
ω + vρq

δ(ω − vρq) (Kρ = 1) . (3.5)
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Using a similar expression for the spins, one can repro-
duce in detail the spectral functions of the Luttinger model
calculated elsewhere directly [3–5]. Notice that the diver-
gences are stronger than for a spinless Luttinger model
ensuring that singularities remain after performing the
convolution integrals. For both Kν 6= 1, the coalescence
of three of the four singularities of gρ(q, ω) and gσ(q, ω) is
needed to generate a singularity in the spectral function
of the Luttinger model; if one of them, e.g. Kσ, is unity,
the coalescence of two singularities is sufficient.

The determination of the spin correlation function is
more involved because it has no simple representation in
terms of the Luther-Emery pseudofermions, excluding any
exact calculation. I now show that the leading behavior of
this function can, however, be uniquely constructed from
symmetries, equivalences, and known limits if the Ansatz
is made that gσ(xt) is a product of power laws and ex-
ponentials in x and t. There is a variety of arguments re-
quiring this form, and we will give them in the following,
together with the construction procedure.

The important steps are: (i) representing the Hamilto-
nian in terms of right- and left-moving fermions requires
gσ to be a function of x ± vσt only. In general, gσ will
contain both power laws (f±) and exponentials (fexp) of
these variables

gσ(xt) ∼ f+(x− vσt)f−(x+ vσt)fexp(x
2 − v2

σt
2). (3.6)

Interactions other than g4 can only mix left- and right-
moving excitations, producing products of x±vσt, or func-
tions thereof, but cannot introduce new dependences on x
and/or t. This is consistent both with the boson solution of
the massless Luttinger phase and with the Luther-Emery
solution of the gapped phase. (The Lorentz invariance of
the Luther-Emery model requires all correlation functions
of Luther-Emery pseudofermions to depend on x2 − v2

σt
2

only – and by implication all those of the physical fermions
whose operators can be represented in terms on Luther-
Emery fermions alone.) The exponential part fexp neces-
sarily is a function of x2 − v2

σt
2 only. All dependences on

x and t other than through functions of x2 − v2
σt

2 must
therefore be present also in the Luttinger model (g1⊥ = 0),
and necessarily are of power-law form.

(ii) The limit of a vanishing gap ∆σ → 0 can also
be used to constrain the function gσ(xt), but is rather
subtle. To make the argument clear, we momentarily re-
lax the assumption of spin rotation invariance so that the
spin channel of the model is described by g1⊥ and general
Kσ. (Alternatively, we can look at a Mott problem with
Umklapp scattering g3⊥ and Kρ 6= 1 is more natural.) In
the limit ∆σ → 0, the function fexp(x

2 − v2
σt

2)→ 1 here,
because the exponential dependences are introduced by
the finite gap. Straightforwardly, one would now identify
the product f+(x−vσt)f−(x+vσt) = 〈Ψσ(xt)Ψ†σ(00)〉g1⊥=0

with the spin part of the spectral function of the remaining
Luttinger model, i.e. equation (3.7) below with anomalous
exponents δ− = (Kσ + K−1

σ − 2)/8 and δ+ = δ− + 1/2.
This physically appealing procedure was used in an ear-
lier paper [17], and possibly could describe the physics of
a small-gap Luther-Emery model.

Taking the limit ∆σ → 0 to constrain eventual power-
laws in gσ(xt) involves different physics, however, and the
above argument must be modified. For vanishing gap, gσ
must reduce to the correlation function of the free Lut-
tinger model (Kσ = 1), no matter what value of Kσ

would describe the hypothetical Luttinger model obtained
from the Luther-Emery model (2.1) for g1⊥ = 0, i.e. in-
dependently of any assumption on spin-rotation invari-
ance. Physically, this is so because the anomalous operator
dimensions Kσ 6= 1 of the Luttinger model are a conse-
quence of singular low-energy virtual particle-hole exci-
tations. When there is a gap at the Fermi surface, these
processes are quenched, and one is left with the exponent
Kσ = 1 of the free model [35]. Notice that this argument
implies that we consider a rather large gap.

Accidentally, the spectral functions given earlier [17]
remain correct. This, however, is due to the limitation
to spin-rotation invariant interactions there. They impose
Kσ = 1 for the power-law functions f±(x ∓ vσt) in any
case.

With fexp(x
2 − v2

σt
2;∆σ = 0) ∼ 1 one can determine

all possible power-laws f± up to corrections varying more
slowly than a power law, to be

f±(x∓ vσt) = [α− i(x∓ vσt)]
−δ± (3.7)

with exponents

δ+ = 1/2 , δ− = 0. (3.8)

These are the exponents of a free Luttinger correlation
function for the spin part of a right-moving fermion. I
re-emphasize that they arise because of the quenching of
low-energy particle-hole excitations by the spin gap and
hold independent of any assumption on spin-rotation in-
variance. (As we will see below, the corresponding result
for the charge channel implies that there cannot be any
anomalous dimensions in a 1D Mott insulator with spin-
rotation invariance respected).

(iii) From the equivalence of the Luther-Emery model
to a classical 2D Coulomb gas [23] (using the Matsubara
formalism of imaginary times τ = it, putting y = vστ)
and Debye screening of the charges above the Kosterlitz-
Thouless temperature, one deduces an exponential factor

fexp(x± vσt) ∼ exp(−c∆σ

√
x2/v2

σ − t
2) (3.9)

with an undetermined constant c, in fexp. This equivalence
quite generally excludes any decay faster than (3.9).

In this picture, the perturbation Hamiltonian (2.14)
generates a Coulomb gas of charges qe = ± 1, and the Φσ-
fields of the Green’s function appear as two test charges
q′e = ± 1/2 whose bare (logarithmic) interaction is mod-
ified by screening from the Coulomb gas. The gapped
Luther-Emery phase corresponds to the high-temperature
plasma phase of unbound charges in the Coulomb gas, and
the screening can then be treated in the Debye-Hückel ap-
proximation [36]. Here, the effective potential between the

charges is V (r) ∼ exp(−κD|r|)/
√
κD|r| with the Debye

wavevector κD = 2∆σ/vσ [23]. The Θσ-fields can then be
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viewed as magnetic monopoles with strengths qm = ± 1/2.
Their interaction is again logarithmic, and they couple
to the electric charges with Vem(r) ∼ − arctan(y/x) [37].
Clearly, the high-temperature plasma of electric charges
qe = ±1 modifies the effective monopole-monopole inter-
action which becomes

Vm−m(q) = −
2π

q2
+

2π

q2

(
qy

qx

)2
1

q2 + κ2
D

, (3.10)

where I have used the Debye-Hückel polarization propa-
gator

Π(q) =
q2

2π

κ2
D

q2 + κ2
D

· (3.11)

Fourier-transforming back to real space, one obtains

Vm−m(r) ∼ ln |r|+ c′|r|κD (3.12)

with an open constant c′ ∝ c. One observes an antiscreen-
ing effect here: in the presence of the electric charges, the
magnetic monopoles are confined more strongly than with-
out charges! Going back to real times, (3.12) produces the
exponential dependence in (3.9) and, most importantly,
gives additional (in fact, for those multi-particle correla-
tion functions which only depend on x2 − v2

σt
2 the only

firm) justification for the presence of power-law prefactors
in addition to exponential terms in (3.6).

(iv) The open constant c in (3.9) can be determined
from a spectral representation of fexp, and our interpreta-
tion of the bosonization formula (2.8). Fourier transform-
ing fexp(x, t), one obtains

fexp(q, ω) = 2πvσc∆σ
Θ(ω2 − v2

σq
2 − c2∆2

σ)

(ω2 − v2
σq

2 − c2∆2
σ)3/2

(3.13)

which has a gap of magnitude c∆σ in its spectrum. This
gap must correspond to the excitation of |n| spinons where
n is the prefactor of iΘσ(x)/

√
2 in the operator whose

correlation function we wish to calculate. This constrains
the prefactor in the exponential to c = |n| quite generally.
For the single-particle Green’s function n = 1, and we
obtain c = 1 here.

(v) The present construction of gσ(xt) is not an exact
calculation. It is therefore important to look for exactly
known cases which can be used as tests, to confirm the
validity of this construction. Gulácsi has calculated ex-
plicitly the t = 0-Green’s function of a 1D Mott insulator
[38]: He finds G(x) ∼ exp(−∆ρ|x|)/|x| which is in com-

plete agreement with the present theory when the 1/
√
|x|-

contribution from the ungapped channel is multiplied to
equation (3.14) below. That there may be a power-law
prefactor in the charge part of the spectral function has
also been realized but well hidden in publications, by oth-
ers [39].

In Section 6, I will discuss further tests of these rules
based on two-particle correlation functions.

From the rules (i) – (v), I find

gσ(x, t) ∼ exp
(
−∆σ

√
x2 − v2

σt
2/vσ

)
/
√
α+ i(vσt− x).

(3.14)

Fourier transformation then gives

gσ(q, ω) ∼

(
1 +

vσq√
v2
σq

2 +∆2
σ

)
Θ(ω + vσq)√
ω + vσq

×δ(ω −
√
v2
σq

2 +∆2
σ). (3.15)

The comparison of (3.15) with (3.5) (after ρ → σ there)
is interesting. The δ-function translates the absence of
anomalous dimensions in the gapped channel, a conse-
quence of rule (ii), rather than spin-rotation invariance
as in the σ-version of (3.5). The change in dispersion
due to the spin gap enters through this δ-function. The
frequency-dependent prefactor is the same as in the gap-
less system. However, due to the different argument in
the δ-function, it no longer becomes singular in the limit

q, ω → 0 but has an upper limit of ∆
−1/2
σ now. A similar

effect occurs in the Green’s function of 1D quantum anti-
ferromagnets, where the opening of the spin gap cuts off a
singularity of the prefactor of the delta function [40]. The
factor in parentheses is a coherence factor translating the
enhanced spin-pairing tendency at the origin of the spin
gap, and one readliy recognizes the same structure as for
the coherence factors uq, vq familiar from the theory of
superconductivity.

4 Spectral function for the spin-gapped
Luther-Emery model

We now must convolute gσ(q, ω), equation (3.15), with
the charge part, equations (3.4) or (3.5). The results de-
pend on the relative magnitudes of the charge and spin
velocities. We therefore treat separately the cases of (A)
repulsive interactions (in the sense that the effective for-
ward scattering matrix element g2ρ − g1‖/2 > 0), i.e.
Kρ < 1, and vρ > vσ, where Peierls-type 2kF -CDW fluc-
tuations dominate, and (B) attractive forward scattering,
i.e. Kρ > 1 and vρ < vσ, when singlet superconducting
fluctuations are most important. (The inequalities on the
velocities andKρ usually go with each other as listed when
standard lattice models are treated. Of course, when one
takes all giν as free parameters, other combinations are
possible. Relevant for the subsequent classification then
are the velocities.)

What could we expect from our knowledge of the Lut-
tinger liquid [3]? There the singularities at ω = vρ(σ)q arise
from processes where the charge (spin) contributes all of
the electron’s momentum q and the spin (charge) none.
The same argument applied to the Luther-Emery model
predicts signals at the renormalized spin dispersion εσ(q),
equation (2.18), and at a shifted charge dispersion

ερ(q) = vρq +∆σ. (4.1)

Figure 1 shows the location of the signals expected from
this argument. The ∆σ-shift in the charge dispersion
comes from the fact that the zero-momentum spin fluc-
tuation can only be excited at a cost of ∆σ. As will be
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q

ε

∆σ

εσ(q)

ερ(q)

Fig. 1. Dispersion of peaks in the spectral function ρ(q, ω) of a
spin-gapped Luther-Emery model with vρ > vσ. The dispersion
laws ερ(q) and εσ(q) are given in the text. The heavy solid
and dashed lines give the signals in the main band [sign(ω) =
sign(q)] while the light dashed lines label the shadow bands
[sign(ω) = – sign(q)].

seen below, however, the spectral functions of the Luther-
Emery model never show two singularities with these dis-
persions. The intuitive predictions on the spectral function
of the Luther-Emery model basically transcribe the stan-
dard argument that the behavior of correlation functions
is modified on energy scales below the gap (correlations
are suppressed there) but recovered almost unchanged on
higher energy scales. Our results will show that for dy-
namical, q and ω-dependent correlations, this argument is
not trustworthy.

4.1 One-dimensional Peierls “insulators”

We assume vρ > vσ and Kρ < 1, implying dominant
CDW correlations. Calling these systems “insulators” is
a misnomer, however, because the charges are gapless and
the systems are metallic. More precisely, we think about
the Luther-Emery model here as describing the “normal”
metallic state above a CDW transition.

The convolution of gσ and gρ, equation (3.3), is rather
straightforward now. After executing the ω′-integral, sin-
gularities are obtained from the coalescence of the two
singularities carried by gρ(q, ω). The result of the calcula-
tion is shown schematically in Figure 2 for q < 0 (unlike
previous papers, we present the spectral functions as those
of the occupied states, i.e. as they would be measured by
a photoemission experiment). There are indeed features
at the special frequencies shown in Figure 1. On the spin
dispersion εσ(q), there is a true singularity

ρ[q, ω ≈ −εσ(q)] ∼ Θ[−ω − εσ(q)][−ω − εσ(q)]α−1/2

(4.2)

as in the Luttinger model. Here, α is defined as α = (Kρ+
K−1
ρ −2)/4 = 2γρ since the notion of a Kσ does not make

sense in a spin-gapped system. Folklore would then predict
another singularity |ω + ερ(q)|(α−1)/2 (short dashed lines
in Fig. 2) which is not observed here. It is cut off instead
to a finite maximum of order

ρ[q, ω ≈ −ερ(q)] ∼ ∆
(α−1)/2
σ . (4.3)

εσ(q)
ω

-εσ(q)-ερ(q) ερ(q)

ρ(q,ω)

α-1
2∆σ

(-ω-εσ(q))
1
2α-

Fig. 2. Spectral function of the spin-gapped Luther-Emery
model for q < 0. vρ > vσ has been assumed, as applies to a
1D Peierls insulator. The dashed line at −ερ(k) indicates the
Luttinger liquid divergence which is suppressed here to a finite
maximum.

The reason for cutting of the Luttinger divergence on the
charge dispersion is related to the non-singular prefactor
(for q → 0) in gσ(q, ω), cf. equation (3.15) and the subse-
quent discussion, and the convolution makes this effect
apparent on the charge dispersion ερ(q). The spin gap
therefore supresses the divergence associated with the
charge dispersion while on the renormalized spin disper-
sion, the spectral response remains singular.

At positive frequencies, the Luther-Emery model has
pronounced shadow bands. Here, the Luttinger liquid only
has very small weight. The weight in the Luther-Emery
model is much stronger, and the spectral function has the
same overall shape as at negative frequencies. For q < 0,
the negative frequency part is enhanced by a coherence
factor 1−vσq/εσ(q) while a factor 1+vσq/εσ(q) decreases
its shadow. These factors translate the increased coher-
ence due to the spin pairing and the finite spin gap, and
are a consequence of the corresponding coherence factors
in equation (3.15). Of course, as suggested by Figure 1,
one can also view the shadow bands as bending back from
the Fermi (or more precisely: the gap) energy as k is in-
creased beyond kF . This view perhaps is closer to a real
photoemission experiment.

4.2 One-dimensional superconductors

We now take vρ < vσ, i.e. attractive forward scattering.
This implies Kρ > 1, and such a system has dominant
singlet pairing fluctuations. Interestingly, two true singu-
larities occur here whose location is shown in Figure 3.
There is one singularity on the renormalized spin disper-
sion

ρ[q, ω ≈ −εσ(q)] ∼ Θ(q − qc)

×Θ[−ω − εσ(q)][−ω − εσ(q)]α−1/2

+Θ(qc − q)| − ω − εσ(q)|α−1/2, (4.4)
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ερ(q)
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~

Fig. 3. Dispersion of singularities in the spectral function
ρ(q, ω) of a spin-gapped Luther-Emery model with vρ < vσ.
The solid lines give the signals in the main band while the
dashed lines label the shadow bands.

ερ(q)
ω

-ερ(q)-εσ(q) εσ(q)

ρ(q,ω)

~ ~

(-ω-ερ(q))~
α-1
2

1
2α-

-ω-εσ(q)

Fig. 4. Spectral function ρ(q, ω) of the spin-gapped Luther-
Emery model with vρ < vσ (applying to 1D superconductors)
for q < 0.

which is one-sided for q > qc and two-sided for q < qc.

qc = sign(q)
vρ

vσ

∆σ√
v2
σ − v

2
ρ

(4.5)

is a critical wave vector which arises in the convolution
procedure from searching the minimum of εσ(q′) + vρ(q−
q′) as a function of q′. At this wavevector, the dispersion

ε̃ρ(q) = εσ(qc) + vρ(q − qc) (4.6)

is tangential to εσ(q). For q < qc, a divergence

ρ[q, ω ≈ −ε̃ρ(q)] ∼ Θ(−ω − ε̃ρ(q))[−ω − ε̃ρ(q)]
α−1

2 (4.7)

on this shifted charge dispersion splits off the spin di-
vergence. Again, there are strong shadow bands with the
same functional forms as the main bands, specifically with
two singularities, and with intensities controlled by coher-
ence factors. The dispersions of the signals are displayed in
Figure 3, and the shape of the spectral function is sketched
in Figure 4.

Notice that, quite generally, that the behavior of
ρ(q, ω ≈ ± ∆σ) is determined by that of the spin part

close to ∆σ and that of the charge part at ω ≈ 0. Un-
like earlier conjectures [25], it is therefore not necessary
to know details of the charge dynamics on a scale ω ≈ ∆σ

where the Luttinger description may have acquired signif-
icant corrrections.

The k-integrated density of states then is N(ω) ∼
Θ(ω−|∆σ |)(ω−|∆σ|)α, independent of the magnitudes of
the velocities. There is no weight below the gap, and the
typical gap singularity in the density of states of the spin
fluctuations is wiped out by convoluting with the gapless
charges.

It is quite clear now that certain properties of 1D
fermions – the dynamical ones involving (1+1)D Fourier
transforms – are affected by the gap opening on all energy
scales, contrary to common expectation, while those de-
pending on one variable alone are modified only on scales
below the gap energy. Despite the opening of a gap in the
spin channel, singular spectral response remains possible
in q- and ω-dependent correlation functions.

5 Spectral function of one-dimensional
Mott insulators

The spectral function of a 1D Mott insulator can be com-
puted as a special case of the generic solution presented
above. One simply has to change σ ↔ ρ everywhere and
put Kσ = 1 in the gapless spin channel for spin-rotation
invariance (which we assume to hold, again). Importantly,
the exchange of ρ and σ also applies to the inequalities on
the velocities vν , where again two cases must be distin-
guished.

Both factors gν in the convolution now involve
δ-functions. In the case of repulsive forward scattering
vρ > vσ, one now finds a spectral function with two singu-
larities, similar to the case of a 1D superconductor. Since
Kσ = 1, the anomalous single-particle exponent α = 0,
i.e. one obtains two inverse square-root singularities. In
the main band (ω < 0 for q < 0), the spectral function
becomes

ρ(q, ω) ∼
Θ(q − qc)Θ[−ω − ερ(q)]√

−ω − ερ(q)

+
Θ(qc − q)Θ[−ω − ε̃σ(q)]√
[−ω − ε̃σ(q)]| − ω − ερ(q)|

(5.1)

with ε̃σ(q) = ερ(qc) + vσ(q − qc). An important differ-
ence to the case of a superconductor occurs in the shadow
band: since the spectral function of the gapless spin chan-
nel has no shadow band of its own, the singularity on ε̃σ(q)
in the shadow band is missing. The shadow band there-
fore has a single singularity on the charge dispersion ερ(q)
with a weight depressed by a coherence factor with re-
spect to the weight of the main band signals. The effect is
completely analogous to the appearence of a single nonan-
alyticity in the (very weak) shadow bands of a Luttinger
liquid with spin-rotation invariant interactions [3–5]. The
shape of this spectral function is sketched in Figure 5.
The location of the singularities follows Figure 3 with the
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-ερ(q) ερ(q)

ρ(q,ω)

-ω-ερ(q)
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2- (-ω-εσ(q))
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Fig. 5. Spectral function ρ(q, ω) of the charge-gapped Luther-
Emery model, describing 1D Mott insulators, with vρ > vσ
for q < 0. The dispersions of the signals follow Figure 3 with
ρ↔ σ everywhere, and the straight dashed lines in the shadow
bands must be ignored.

replacement ρ ↔ σ except for the shadow bands where
the straight lines should be ignored.

The case vσ > vρ again is different. Compared to
the case of the 1D Peierls “insulator”, the anomalous
dimension α on the charge dispersion drops out due to
spin-rotation invariance, giving an inverse square-root sin-
gularity on ερ(q). Also the finite maximum on the shifted
spin-dispersion εσ(q) does not occur. This is because the
δ-function has zero weight in the energy domain where
the square-root prefactor in equation (3.15) takes its max-
imum. The shadow band, of course, has a single inverse-
square-root singularity with the usual coherence factors.
Thus, the spectral function for this case becomes

ρ(q, ω) ∼
Θ[|ω| − ερ(q)]√
|ω| − ερ(q)

, (5.2)

up to coherence factors, and the density of states

N(ω) ∼ Θ(|ω| −∆ρ)× regular function. (5.3)

The spectral properties of a doped Mott insulator, of
course, depend on the detailed scenario emerging from
a more complete theory. Work on the Hubbard model
shows, however, that the upper Hubbard band qualita-
tively survives a finite dopant concentration [30,38]. Con-
tinuity then suggests that as the insulating state is left by
varying the band-filling, spectral weight is gradually taken
out of both the main and shadow bands of a spectral func-
tion such as those discussed before, and transferred into
the charge and spin divergences of a Luttinger liquid sig-
nal. Although the spins are left unaffected in the transition
and only a charge gap opens, both the charge and the spin
signals are predicted to be shifted and strongly modified
by doping. This is a direct consequence of the convolu-
tion property (3.3) of the single-particle spectral function.
When superposing (to a first approximation) the two sig-
nals, care must be taken, in addition, to account for the
dependence of the chemical potential on doping level.

6 Generalization to other correlation
functions

We now discuss the construction of other correlation func-
tions for the Luther-Emery model. Clearly, due to charge-
spin separation, they can again be written as convolutions
of charge and spin correlation functions. Consider a gen-
eral local operator

O(m,n)
ν (x) = Ψmrν(x)Ψnrν(x), (6.1)

where Ψrν(x) had been introduced in equation (2.11), and
a positive (negative) exponent is understood as a creation
(annihilation) operator. Bosonizing Oν , the Φν -field ac-
quires a prefactor (m−n), and Θν is multiplied by (m+n)
with respect to the single-particle operator Ψrν . If gapless
channel is assumed to be the charge ν = ρ (as we have
done throughout this paper except in the preceding sec-
tion), the correlation function of Oρ behaves as

R(m,n)
ρ (xt) =

〈
O(m,n)
ρ (xt)

[
O(m,n)
ρ (00)

]†〉
Luttinger

∼ (α+ ivρt− ix)−m
2/2 (α+ ivρt+ ix)−n

2/2

×

(
α2

(α+ ivρt)2 + x2

) (m−n)2

8 (Kρ−1)+
(m+n)2

8 (K−1
ρ −1)

.

(6.2)

Its Fourier transform is

R(m,n)
ρ (q, ω) ∼ Θ(ω − vρq)Θ(ω + vρq)

× (ω−vρq)
γ

(m,n)
− −1(ω+vρq)

γ
(m,n)
+ −1, (6.3)

γ
(m,n)
+ =

m2

2
+

(m− n)2

8
(Kρ − 1)

+
(m+ n)2

8

(
1

Kν
− 1

)
,

γ
(m,n)
− =

n2

2
+

(m− n)2

8
(Kρ − 1)

+
(m+ n)2

8

(
1

Kν
− 1

)
.

We now turn to such an operator for spin, Oσ, in the
presence of a spin gap. When the spin gap opens due to
the Hamiltonian (2.14), the Φσ-field develops long-range
order. Its dual field, Θσ, then is disordered, and its cor-
relations will contain exponential terms similar to fexp,
equation (3.9). We now have to distinguish two cases. (i)

If we have m = −n, the operator O
(m,−m)
σ can be rep-

resented in terms of the Φσ-field alone. Since this is the
ordering field, we simply can put it to a constant value, im-

plying R
(m,−m)
σ (xt) ∼ 1, and the space-time dependence

of the total correlation function is then determined by the

charge part R
(s,t)
ρ (q, ω) (which may carry different pow-

ers s, t of Ψr,ρ, depending on the spin directions) alone,
and given by equation (6.3). One can, in principle, go one
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step further and account for the long-wavelength fluctu-
ations out of the ground state-value of Φσ. A convenient
method for this again is the mapping onto a classical 2D
Coulomb gas. Since the Φσ-field of the correlation func-
tions introduces electric test charges, we know that in the
massive Luther-Emery phase their interaction is exponen-
tially screened (cf. Sect. 3). We then find the fluctuation
contribution

〈[Φσ(xt) − Φσ(00)]2〉 ∼
exp

(
−2∆σ

√
x2/v2

σ − t
2
)

(x2/v2
σ − t

2)1/4
·

(6.4)

I will discuss an interesting application in a moment.

However, if (ii) m 6= −n, the spin correlations contain
the disorder field Θσ dual to the Φσ, and the gap opening
will lead to exponential factors as in equation (3.9). This
is the case for the Green’s function, cf. equation (3.2). We
apply the same rules (i) – (v) as in Section 3. Specifically,
the prefactor of the gap in the exponential is c = |m+ n|,
by comparing the energy for the insertion of |m + n| σ-
particles into the system with the gap obtained in the
spectral representation of the exponential. The power-law
prefactor is that of the free Luttinger model because there
cannot be any anomalous dimensions in a gapped fermion
system. In (xt)-space, the correlation function then is

R(m,n)
σ (xt) =

〈
O(m,n)
σ (xt)

[
O(m,n)
σ (00)

]†〉
∼ (α+ ivσt− ix)

−m2/2
(α+ ivσt+ ix)

−n2/2

× exp
(
−|m+ n|∆σ

√
x2/v2

σ − t
2
)
. (6.5)

This expression can be Fourier transformed and convo-
luted with an appropriate charge part.

What the present construction cannot do, however, is
to give information on the magnitude, or a possible van-
ishing, of the prefactor of the correlation function. One
example is the 2kF -CDW correlation function in the half-
filled replusive Hubbard model, where a naive use of the
construction above would predict (in real space at t = 0)
a dependence ∼ x−1 which, on physical grounds, is not
expected to be important in that model [19]. Qualitative
information can be obtained in that situation from renor-
malization group studies, where one can monitor how the
amplitude of a correlation function changes as one moves
away from a Luttinger liquid fixed point [41]. A com-
plete solution of this problem presumably would require
an exact boson representation of the physical fermions in a
Luther-Emery model, including fermion raising operators.

To conclude this section, I discuss two more test cases
for my construction procedure. Consider the transverse
2kF -spin-correlation functions [1,25]

RSDW⊥(xt) = 〈OSDW⊥(xt)O†SDW⊥(00)〉

= 〈Ψ†−↓(xt)Ψ+↑(xt)Ψ
†
+,↑(00)Ψ−↓(00)〉 (6.6)

in the Luther-Emery spin-gap regime. The spin density
wave operator can also be represented as

OSDW⊥(xt) =
e2ikF x

2πα
exp

{
−i
√

2 [Φρ(x) +Θσ(x)]
}

= e2ikF xO(−1,1)
ρ (xt)O(−1,−1)

σ (xt). (6.7)

We now limit ourselves to the spin component of the cor-
relation function and obtain, using equation (6.5),

R(−1,−1)
σ (xt) ∼

exp
(
−2∆σ

√
x2/v2

σ − t
2
)

√
x2 − v2

σt
2

· (6.8)

Fourier transformation gives

R(−1,−1)
σ (q, ω) ∼

Θ(ω2 − v2
σq

2 − 4∆2
σ)√

ω2 − v2
σq

2 − 4∆2
σ

· (6.9)

One the other hand, on the Luther-Emery line Kσ = 1/2,
one can refermionize the operator

O(−1,−1)
σ (x) =

√
2παΨ†−(x)Ψ†+(x) (6.10)

in terms of spinless fermions Ψr(x), by inverting the spin-
less variant [1] of the bosonization formula (2.8). The
limitation of this procedure to the Luther-Emery line is
inessential because different coupling constants will only
affect the magnitude of the spin gap but not the form
of the excitation spectrum, so long as ∆σ > 0. Now,

one can calculate R
(−1,−1)
σ (q, ω) as the pairing correla-

tion function of spinless fermions in a fermion represen-
tation. Such a calculation has been outlined by Lee [25],
and the result derived from his expressions agrees with
equation (6.9) both concerning the regions of nonvan-
ishing spectral weight, and the critical exponents of the
singularities. Incidentally, my own expressions are more
complicated than Lee’s by additional terms and additional
occupation functions n(k) and 1 − n(k). They conspire
with the coherence factors [1 ± vσq/εσ(q)] to produce a
prefactor v2

σq
2/(v2

σq
2 +4∆2

σ) to the leading inverse-square-
root singularity which vanishes as q → 0. At q = 0, a
subleading term ∝ Θ(|ω| − 2∆σ) times a regular function
remains. Apart these subtle prefactors, the exact fermionic
calculation reproduces the result of the construction pro-
cedure advocated here for the correlation functions of the
Luther-Emery model.

A final test is provided by the charge correlations of a
1D Mott insulator. In general, the charge density operator
n̂(x) has contributions at wavevectors q ≈ 0, 2kF , 4kF ,
etc.

n̂(x) ∼ −

√
2

π

∂Φρ(x)

∂x

+
1

πα
exp

{
−2ikFx+

√
2iΦρ(x)

}
cos[
√

2Φσ(x)]

+
2

(2πα)2
exp

{
−4ikFx+

√
8iΦρ(x)

}
. (6.11)

In a half-filled band, 4kF = 2π/a, a reciprocal lattice vec-
tor so that the 4kF -term effectively does not oscillate when
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measured on the lattice sites. When the Mott gap ∆ρ

opens, the field Φρ orders at a finite constant value. The
third term in (6.11) then translates the long-range charge
order, the first term measures the long-wavelength fluc-
tuations out of this ordered ground state, and the second
term measures 2kF charge fluctuations. Using the argu-
ments at the beginning of this section (after σ ↔ ρ), we
obtain from the first two terms a spectral function

Rn(q, ω) ∼ δ(q)δ(ω) + q2Θ(ω2 − v2
ρ − 4∆2

ρ)

ω2 − v2
ρ − 4∆2

ρ

· (6.12)

The zero-frequency δ-function comes from the “4kF”-part,
and the high-frequency signal from the ∂Φρ/∂x-term. In
principle, one could also calculate the 2kF -part. However,
experience with the Hubbard model suggests that prefac-
tors not specified here suppress the 2kF -CDW fluctuations
on the lattice sites [1], and we do not consider them here
(similar, and nonvanishing contributions, however appear
in 2kF -SDW correlation functions, and in a “bond order
wave” which is best described as a 2kF -CDW centered
midway between two sites).

The spectral function Rn(q, ω) has been calculated re-
cently by Mori and Fukuyama [26]. They do not give an
explicit expression which would allow to check the crit-
ical exponents, but the region of nonvanishing spectral
weight, and the overall shape of the high-frequency signal
are consistent with equation (6.12), whereas the δ-function
in equation (6.12) seems to be missing. It is present,
however, in a numerical diagonalization of an extended
Hubbard model [42], and provides another, though more
superficial test of our construction.

7 Relation to other work

In the preceding sections, we have discussed some tests for
the dynamical correlation functions of the Luther-Emery
model constructed here [25,38]. Independent verification
comes from work on many models which fall into the
Luther-Emery universality class.

In particular, numerical studies have attempted to look
into the spectral properties of correlated fermion mod-
els. Quantum Monte-Carlo simulations of the 1D Hub-
bard model at half-filling, a prototypical Mott insulator
with vρ > vσ provides evidence for pronounced shadow
bands, much stronger than those of the doped systems
which form Luttinger liquids [30]. At present, the reso-
lution is not good enough to directly visualize the two
dispersing inverse-square-root singularities found here.
However, recent improvements on doped Hubbard models
[43] lend hope that Quantum Monte-Carlo will be able, in
the near future, to confirm the predicitons made here.

The 1D t−J-model at half-filling also forms a Mott in-
sulator with vρ > vσ, and exact diagonalization of lattices
up to 22 sites has allowed a calculation of the spectral
function of this model [15]. While the location of regions
of finite spectral weight, and of the singularities agrees
with the present study, numerical diagonalization on such

small systems does not allow to determine the critical ex-
ponents of the divergences of the 1D Mott insulator.

Spin gaps also arise in many lattice models. E.g. for
two coupled Luttinger, Hubbard, or t−J-chains, there are
wide regions of parameter space where the spin fluctua-
tions are massive, and the single-particle spectral function
has been calculated occasionally [33]. Again, exact diago-
nalization finds important shadow bands [33] but the res-
olution is not good enough to separate the two dispersing
divergences found in Section 4 for a superconductor, not
to speak of the much weaker signal on the shifted charge
dispersion ερ(q) predicted above for a CDW system.

Evidence for such a weak signal, and for a divergent
signal on the gapped spin dispersion εσ(q) comes, however,
from exact diagonalization of a t−J−J ′-model where a
spin gap opens for certain values of J ′ [44]. These authors
observe a very strong spinon signal, and the holon peak is
anomalously weak, as predicted here.

A Bethe Ansatz calculation of spectral functions for a
1D Mott insulator has recently been performed by Sorella
and Parola (SP) based on the 1D supersymmetric t−J
model [45], and also confirms essential aspects of the
present work. In their model, vρ < vσ so that we predict a
single inverse-square-root singularity on ερ(q). Such a sin-
gularity is also found from the Bethe Ansatz solution used
by SP. When a finite magnetization is included, SP find
critical exponents which explicitly depend on the momen-
tum of the hole created. One would expect from universal-
ity and the possibility to transform a positive-U Hubbard
model into one with negative U by a particle-hole trans-
formation on one spin species alone, that such spectral
functions should also describe spin-gapped systems with
vρ > vσ. We do not find such momentum-dependences
in the work presented here. SP’s method, however, re-
quires the calculation of the ground state and low-energy
properties of the spin Hamiltonian at finite total momen-
tum of the spin system. These explicitly depend on the
momentum, and produce the momentum-dependent expo-
nents. In the Luther-Emery model, one calculates a spinon
excitation with some momentum with respect to a zero
momentum ground state. The momentum-dependent cor-
relation exponents found by SP certainly are beyond scope
and possibilities of the present model. On the other hand,
their method does not allow to look into more subtle fea-
tures than critical exponents, such as the finite maximum
which we found in this case.

8 Applications to experiments

Importantly, our results could prove useful in the descrip-
tion of the photoemission properties of certain quasi-1D
materials.

There have been angle-resolved photoemission exper-
iments on the 1D Mott insulator SrCuO2 with a gap
2∆ρ ∼ 1.8 eV [15]. The lineshapes observed were anoma-
lously broad and showed unsual dispersion. As a conse-
quence, the authors proposed a description in terms of a
system with charge-spin separation, where the broad fea-
ture would, in fact, be composed of the unresolved spin
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and charge signals. In addition, a strong shadow band
bends back from the gap edge for k > kF . Its dispersion
is consistent with the one of the charge signal for k < kF .
Clearly, these observations are fully consistent with the
theory presented here, which predicts two inverse-square-
root singularities beyond some critical wave vector (cf.
Fig. 5), and a single one below, as are the accompanying
diagonalization results on a 1D t−J-model [15].

More interesting in the present context are a num-
ber of unexplained ARPES results on organic and in-
organic materials which undergo Peierls transitions at
low temperatures. Specifically, ARPES experiments on
the blue bronze K0.3MoO3 by several groups show two
dispersing peaks [12]. Also in the organic conductor TTF–
TCNQ, anomalous lineshapes are observed [13]. Of in-
terest here is the TCNQ-band which shows 2kF -CDW
fluctuations in the metallic state [14] and triggers a series
of transitions into a low-temperature CDW phase. While
some materials such as the Bechgaard salts [7], or the
TTF-band of TTF–TCNQ (which has strong 4kF -CDW
fluctuations [14]) may well fall into the Luttinger liquid
universality class, it is particularly surprising that CDW
systems such as K0.3MoO3, or the TCNQ-band in TTF–
TCNQ, should behave as Luttinger liquids. In fact, the
photoemission properties are in striking contrast to the
established picture of a fluctuating Peierls insulator which
has been applied quite universally to describe the normal
state of CDW systems [46]. It predicts a strongly tempera-
ture dependent, narrow [|ω| ≤ ∆CDW (T = 0)] pseudogap
and ρ(q < 0, ω) is governed by a broadened quasi-particle
peak at ω < 0 and a weak shadow at ω > 0 [18,47].

A Luttinger liquid interpretation for the CDW pho-
toemission is highly suggestive but encounters problems
which are all resolved in a Luther-Emery framework. (i)
As has been explained before, Luttinger liquids have no
dominant 2kF -CDW correlations: for repulsive interac-
tions (Kρ < 1), spin density waves are logarithmically
stronger than CDWs [1], and the behavior of lattice mod-
els is consistent with this picture [48]. For attractive in-
teractions, the system is dominated by superconductiv-
ity [1]. A spin gap is a necessary condition for promoting
CDW correlations in correlated 1D electron systems and
is realized in the Luther-Emery model! (ii) 2kF -CDWs
often are due to electron-phonon coupling, and renormal-
ization group provides us with a detailed scenario [1,27].
The dependence of the spin gap on electron-phonon cou-
pling λ, the phonon frequency ωD, and Kρ, can be cal-
culated reliably [27]. A spin gap also opens if 2kF -CDWs
are caused by Coulomb interaction between chains [34].
(iii) The spin susceptibility of CDW systems above the
Peierls temperature decreases significantly with decreas-
ing temperature indicative of activated spin fluctuations.
This applies applies both to K0.3MoO3 at temperatures
from TP to beyond 700 K [49], and to the TCNQ-chain
in TTF–TCNQ where the magnetic susceptibility contri-
butions of both chains can be separated by NMR [50].
Notice in this context that at finite temperature, the den-
sity of states in the spin channel of the Luther-Emery
model is essentially the same as for the Lee-Rice-Anderson

theory of a fluctuating Peierls insulator [51], implying that
both models will have similar χ(T ). The temperature-
dependent susceptibility alone therefore cannot discrim-
inate between these two theories. Remarkably however, in
K0.3MoO3 the conductivity is metallic in the same tem-
perature range: early experiments over a restricted tem-
perature range find the resistance ρ(T ) ∼ T [52] while very
recent data taken to much higher temperatures even sug-
gest a sublinear temperature dependence [53] – not unlike
the one found in Luttinger liquids with repulsive electron-
electron interactions [54]. In TTF–TCNQ, ρ(T ) ∼ T has
been found [55], but it is not known how the individual
chains contribute to this dependence. The experiments are
incompatible with the temperature dependence of the con-
ductivity expected in a fluctuating Peierls insulator [18]
which indeed is observed in some organic materials and
also (TaSe4)2I. (iv) For a Luttinger model, the stronger
divergence in ρ(q, ω) is associated with the charge mode
and disperses more quickly than the weaker signal. In the
experiment on K0.3MoO3, the quickly dispersing signal is
less peaked than the slow one. On the other hand, the
important feature of the Luther-Emery spectral function,
Figure 1, is that the spin gap supresses the divergence
of the charge signal which disperses more quickly than
the divergent spin contribution. (v) A CDW transition
out of a Luther-Emery liquid by opening a charge gap
at the Peierls temperature, is also consistent with sub-
tle transfers of spectral weight in regions away from the
Fermi energy, observed in spectra taken through the true
CDW transition [56]. In these experiments, the spectral
weight at the Fermi energy is essentially zero at any tem-
perature. However, at some finite energy below EF , the
weight drops with a temperature dependence consistent
with a BCS-like gap. In a naive charge-spin separating,
Luther-Emery scenario, one would postulate the opening
of a charge gap ∆ρ at the Peierls temperature (as a con-
sequence of the establishment of 3D coherence, allowing
for the finite-T transition), in addition to the preexisting
spin gap. Thus one expects a drop of spectral weight at
the Peierls transition in an energy range between EF −∆σ

and EF −∆σ−∆ρ which, on a sufficiently coarse temper-
ature scale, would amount to a shift of the leading edge
by ∆ρ. More likely, the establishment of 3D coherence will
destroy to some extent the ideal spin-charge separation of
the 1D Luther-Emery model, and produce a single CDW
gap ∆CDW > ∆σ below the transition, both for charges
and spins.

On a quantitative level, there is one major problem for
the description of the normal state of most CDW systems:
the spin gap derived from an analysis of the magnetic
susceptibilities is much smaller than the spin gaps derived
from the peak maxima of the ARPES signals. At present
it is not clear if this indicates a fundamental problem with
a Luther-Emery model (the problem would however not
be solved with any competing theory), if this is due to
some ununderstood effect in the photoemission process, or
if it is due to some extrinsic sample property. In another
language, it is not clear what mechanism is responsible for
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apparent gaps which systematically are a sizable fraction
of the valence band widths.

This phenomenology is not consistent with many other
theories proposed for 1D fermions. Theories based on a
fluctuating Peierls insulator would have to explain the two
dispersing bands seen in K0.3MoO3 as two separate bands.
Two such bands indeed exist but the implication would
be that band structure calculations get one of them too
narrow by a factor of 5, but get the correct dispersion
for the other one [57]. Moreover, they cannot reconcile
the activated susceptibility with the essentially metallic
conductivity above the Peierls temperature.

Standard Luttinger liquids [1,43], but also the anoma-
lous ground states obtained from coupling Luttinger
chains so long as their low-energy fixed point is a Fermi
liquid [34], do neither produce the CDW correlations, nor
the activated susceptibility. Notice, however, that both
transversely coupled Luttinger liquids (Kopietz et al. [34])
and the 1D Hubbard model [43] can, under some cir-
cumstances, produce spectral functions where the peak
on the spinon dispersion is stronger than that on the
charge dispersion. They, however, would predict a Fermi
surface crossing of the photoemission signal which is not
observed experimentally, in addition to the problems listed
above. In the experiments, instead, the dispersing spec-
tral features bend back from the Fermi energy as k is
increased beyond kF , in a manner strongly reminiscent of
the shadow bands discussed before.

Depsite (important) quantitative problems, the
Luther-Emery spectral function is consistent with the pho-
toemission experiments on K0.3MoO3 and TTF–TCNQ,
and beyond that, the model is consistent with much of
the other experimental phenomenology available. I em-
phasize that while the agreement of the Luther-Emery
spectral function with the observed photoemission line-
shapes certainly is an argument in favor of this model, it
is the consistency of its predictions with most other exper-
iments available which suggests that it might be a natural
starting point for a description of the low-energy physics
of these CDW materials.

Obviously, this suggestion is somewhat speculative and
independent support is called for. Its virtue is that it
comes to grips with the puzzle that the spin susceptibili-
ties of K0.3MoO3 and TTF–TCNQ decrease with decreas-
ing temperature while the conductivity are metallic, that
it leaves space for the good description of optical proper-
ties as a fluctuating Peierls insulator (they only probe the
charge fluctuations which will form CDW precursors at
temperatures much below the spin gap opening, presum-
ably as a consequence of emerging 3D coherence), and that
it provides an (admittedly phenomenological) description
of the photoemission properties of these materials with ex-
tremely 1D electronic properties [58]. As in the Bechgaard
salts [7], a single-particle exponent α ∼ 1/2 . . .1 would be
required implying strong long-range electron-electron in-
teractions, and there is at best preliminary support from
transport measurements [53], for such strong correlations
in K0.3MoO3. Retarded electron-phonon coupling could
increase α over its purely electronic value [27]. To what

extent this mechanism contributes could be gauged from
the measured α which must be larger than the one de-
rived from the enhancement of vρ over the band veloc-
ity (hélas strongly depending on the accuracy of band
structure calculations). In TTF–TCNQ, the analysis is
made difficult by the presence of two chains. There is evi-
dence for strong long-range electron-electron interactions
on the TTF-chain from the observation of 4kF -CDW fluc-
tuations, but the situation for TCNQ is less clear. If a
sizable enhancement of the dispersion of the ARPES sig-
nals over the estimated bandwidths can be interpreted as
evidence for long-range electronic correlations, they would
indeed be present on both chains.

9 Summary

In this paper, I have presented a construction of the dy-
namical correlation functions of the 1D Luther-Emery
model. This model has one gapped degree of freedom,
and an ungapped one, and describes 1D superconductors
and Peierls insulators (spin gap) and 1D Mott insulators
(charge gap). It is a natural extension of Luttinger liquid
theory to the peculiar phase intermediate between metal
and band insulator, made possible in one dimension by
the phenomenon of charge-spin separation. The dynami-
cal correlation functions presented here show where and
to what extent the two typically 1D features of a Lut-
tinger liquid: charge-spin separation, and anomalous di-
mensions of operators, survive in the presence of a gap in
one channel. Since an exact calculation of such correla-
tion functions usually is not possible in a Luther-Emery
model, our construction relied heavily on limiting cases,
symmetries, and equivalences to other models. However, it
successfully passed several tests in situations where exact
results were available from other methods.

The main emphasis of the paper was on the single-
particle spectral function which is measured in photoemis-
sion. We showed that, generically, charge-spin separation
and anomalous dimensions are also visible in the spectral
functions of the Luther-Emery model. Specifically, for a
spin gapped system with repulsive interactions, describ-
ing a 1D charge density wave system, the spectral func-
tion has a true singularity on the gapped spin dispersion
with an anomalous exponent α− 1/2 while on the charge
dispersion, the Luttinger liquid divergence is cut off to a
finite maximum by the spin gap – a results which finds
a straightforward explanation in terms of convolution of
charge and spin correlation functions. For attractive in-
teractions, i.e. a 1D superconductor, two divergences with
anomalous dimensions are found. For 1D Mott insulators,
i.e. a charge gap, one finds one or two inverse-square-
root singularities, i.e. no anomalous dimension (due to
spin-rotation invariance), depending on the order of the
velocities of the charge or spin fluctuations. It was also
shown how these procedures can be generalized to two-
and multi-particle correlation functions.

Besides predicting spectral functions for the many 1D
models falling into the Luther-Emery universality class,
there are a few experimental situations where these results
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can be usefully applied. They successfully describe the
photoemission spectrum of the 1D Mott insulator SrCuO2

[15], to an extent leaving few questions open, the most
notable one being experimental resolution. Less clearcut
but perhaps more interesting are CDW materials such
as K0.3MoO3 and TTF–TCNQ which show very unusual
photoemission spectra. These are qualitatively consistent
with a Luther-Emery model, and we have proposed that
these materials might, most naturally, be described in this
framework. A Luther-Emery phase is necessary as an in-
termediate between a Luttinger liquid and a long-range
ordered CDW, and K0.3MoO3 and TTF–TCNQ are natu-
ral candidates for searching for such a strange metal. This
scenario requires strong electron-electron interactions at
least at high energies, and not all CDW materials need
fall into this scheme. If the electron-phonon interaction
is so strong as to produce CDW precursor fluctuations
at very high temperature, and the electronic correlations
are weak enough, the establishment of a Luttinger liq-
uid, and the crossover to a Luther-Emery liquid at lower
temperature, may be quenched, and a fluctuating Peierls
insulator [46] or a bipolaron liquid [59] may be a more ap-
propriate picture. Some CDW materials such as (TaSe4)2I
[11], (perylene)2PF6 [18], (fluoranthene)2PF6 [60] appar-
ently are consistent with this picture. However, K0.3MoO3

and TTF–TCNQ are not consistent, and the consistency
of the spectral functions constructed in this paper with
the published experiments, and the analysis of further ex-
periments indicate that, besides electron-phonon coupling,
electronic correlations must be important in these CDW
systems.

I wish to acknowledge fruitful discussions with J.W. Allen,
M. Grioni, M. Gulácsi, G.-H. Gweon, D. Malterre, and J.-P.
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Heisenberg fellow.
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